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STRESS DIFFUSION FROM AXIALLY LOADED STIFFENERS
INTO CYLINDRICAL SHELLS*

F. JosepH FISCHERT

Shell Development Company
Houston, Texas

Abstract—A load diffusion problem for cylindrical elastic shells is solved. Infinitely long shells of circular cross
section and uniform thickness are considered. These cylinders are reinforced by one or more equally spaced,
continuously attached axial stiffeners. Each stiffener is loaded by a single concentrated longitudinal force. The
magnitude, sense and axial location of application of each force are the same. The stress quantities of interest
are the membrane shearing stress transmitted by a loaded stringer to the shell and the axial stress developed
within the stringer. The extent to which shell curvature, stringer spacing and stringer bending stiffness affect
these stress quantities is illustrated.

NOTATION

area of cylinder cross section, 2nRh

area of stringer cross section

dimensionless area ratio, 2nE.A4,/EA,
dimensionless bending stiffness parameter, 6(1 — v2)I,/A h*
(B—-v)(1+v)/4

shell bending stiffness parameter, Eh3/12(1 —v?)
elastic modulus of shell

elastic modulus of stringer

stress potential function for Simmonds’ theory
(Eh/PEA,)F

shell thickness

Heaviside step function

area moment of inertia of stringer

M,; shell bending moment, (¢, § = 1 or 2)

N.s  shell membrane stress, ¢ ,,0,5— ¢ o5

Nall (EsAs/PEh)Naﬂ

number of stringers

magnitude of applied concentrated force

shell radius of curvature

axial displacement component

circumferential displacement component
displacement component normal to shell surface
(E,A,/PRW

physical axial coordinate measure

physical circumferential coordinate measure
12(1 -2y

dimensionless curvature parameter, E,A,/E(Rh3)*
Dirac delta function

Kronecker delta

biharmonic operator in (&, 1)

membrane strain component

axial strain of stringer

* This work was supported in part by the National Aeronautics and Space Administration under Grant

NsG-559, and by the Division of Engineering and Applied Physics, Harvard University.
t Formerly at Harvard University.
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(1/C.)¢

dimensionless circumferential coordinate measure, (Eh/E A,)y
n/AN,

Poisson’s ratio

A2/12(1 =2yt

dimensionless axial coordinate measure, (Eh/E A,)x
physical stringer stress

(4,/P)o,

dimensionless shear stress measure, 2C, N,

stress potential function for shallow shell theory
(ER/PEAS)

transform variable

Q\I\ga<:|:‘l‘t

“

g ore

INTRODUCTION AND STATEMENT OF THE PROBLEM

THE problem of load diffusion from a stiffener into a thin elastic sheet is one of significant
technical importance. It is encountered in many areas of structural analysis and has
particular relevance to the design of aeronautical structures. The earliest work in this area
appears to be the classical paper of Melan {1] in which the transfer of an axial concentrated
load from an infinite stiffener to an infinite flat sheet is examined. Solutions to additional
planar problems have subsequently been obtained by Koiter [2], Muki and Sternberg [3]
and others*. In each of these analyses the flat sheet was treated exactly within the context
of generalized plane stress, although various degrees of approximation were used in model-
ing the stiffener.

Approximate theories have also been suggested and employed for the analysis of flat
sheet—stringer problems. In some of the more familiar ‘“‘shear lag™ theories analytical
simplification is obtained through the use of approximate constitutive relations for the
flat sheet.

With regard to the treatment of load diffusion for axially stiffened cylindrical shelils,
there appear to be no “‘exact’ solutions within the context of shell theory. Several approxi-
mate analyses appear in the literature such as the semi-empirical shear lag approach of
Kuhn [4] and the more sophisticated work of McComb [5]. McComb’s analysis for circular
cylindrical shells stiffened by both stringers and rings is based on the following assumptions
regarding the properties of the structure:

(a) The stringers carry only direct stress and the sheet takes only shear stress which
is constant within each shear panel; thus stringer stresses vary linearly between
adjacent rings.

(b) The rings are uniform and have a finite bending stiffness in their own planes, but
they do not restrain longitudinal displacements of the stringers. The bending of the
rings is inextensional.

(c) Effective stringer and ring properties are a composite of actual stiffener properties
and contributions due to the discretization of certain shell properties.

In the present work a number of problems are treated exactly within the context of
shell theory. The structure to be considered is an infinitely long circular cylindrical shell.
This cylinder is reinforced along its entire length by one or more equally spaced, con-
tinuously attached axial stiffeners as shown in Fig. 1. The neutral axis of each stringer
lies in the shell middle surface. A single concentrated axial force is applied to each stringer.

* See [3] for a more extensive bibliography of load diffusion problems for the flat sheet.
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STRINGER

Fi1G. 1. Axially stiffened circular cylindrical shell with a single concentrated longitudinal force applied
to each stringer.

These loads have the same magnitude, sense and axial location of application. The mem-
brane shearing stress transmitted by a loaded stringer to the shell and the axial stress
developed within the stringer will be sought.

A first approach to this problem will be through the use of the shallow shell equations
of Marguerre [6). In this treatment a cylindrical shell of parabolic cross section stiffened
axially along its apex generator is analyzed. To assess the results of the shallow shell analysis
the problem as originally described will be treated exactly with a set of shell equations
due to Simmonds [7].

The results of the above analyses, the behavior of the transmitted shear and stringer
normal stress, will be compared and contrasted with the flat sheet-stringer results of the
Melan problem. The extent to which shell curvature, stringer spacing and stringer bending
stiffness affect the process of load diffusion will be discussed.

SHALLOW SHELL APPROACH

Load diffusion from a stringer into a cylindrical shell is felt to be largely confined to and
affected by a local neighborhood of the shell in the immediate vicinity of the loaded stringer.
For this reason an approach based on the shallow shell equations of Marguerre [6] will
be investigated. These equations will be used to treat an infinitely long cylindrical shell of
parabolic cross section. This shell is stiffened axially along its apex generator and the stiff-
ener is loaded by a single concentrated force directed along the stringer as shown in Fig. 2.
The radius of curvature of the parabola at its apex is R.

Strictly speaking, the field equations of the Marguerre theory apply only to a shallow
portion of the parabolic cylinder in which the rise-to-span ratio does not exceed about
1-to-8. The domain of application will be formally extended to the full parabolic shell,
however, on the basis of the expected exponential decay of stress and displacement quan-
tities in the circumferential direction ; this behavior is anticipated on the basis of known
problem solutions, e.g. Van Dyke [8].

Provided that stress and displacement quantities do decay to negligible values within
a shallow portion of the shell containing the loaded stringer, the results of this single-
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F1G. 2. Geometry of shallow cylindrical shell. Axial stringer loaded by a concentrated longitudinal force.

stringer analysis should be quite good for the description of the multi-stringer circular
cylinder when adjacent stringers do not lie in a common shallow portion of the shell.

Boundary value problem

For the shell geometry under consideration, the field equations of the linear Marguerre
theory formulated in terms of an Airy stress potential function ¢, and the shell normal
displacement component w, become

1
DViw+— ¢, =
VW+R¢_xx 0 1
V4 —ERIZ W = 0. )

These equations are supposed applicable in the semi-infinite domain (— oo < x < o0,
0 < y < o), 1e. in that portion of the shell to one side of the loaded stringer. The first of
these equations is the expression of equilibrium of the shell in the direction normal to the
shell surface, while the second is the statement of compatibility of strains.

The boundary conditions (hereafter also referred to as b.c.) to be satisfied along the
line of stringer attachment (— o0 < x < 00, y = 0), will now be developed into expressions
involving only ¢ and w. Symmetry of the shell deformation provides the basis for two of the
four b.c. The first of these states that the tangential shell displacement normal to the stringer
is zero along this boundary. More precisely,

U(xs y)‘y=0 = 0 (3)
The strain—displacement relations
Exyx = %(u,yx+v,xx)

(4)

Exx,y = Uy
used in conjunction with (3) yield the expression

Exx,y_zgxy’xlyzo = 0. (5)
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Upon substitution of the constitutive relations

1 1
Exx = 'E—h (Nxx - VNY)’) = ﬁ (¢,yy - v¢,xx)

1+ 1+ (6)
v v
Exy = _EI—NXY = ""Eh Dy
where N5 = ¢ ,,0,5— @ o5, into (5) the final form for this b.c. is obtained as
¢,yyy +(2+ v)¢,xxy|y= o=0. (7

The second b.c. states that the rotation of the shell in the circumferential direction along
the line of stringer attachment must, by symmetry, vanish ; thus

wl,—0 = 0. 8

Another boundary condition is a statement of the axial force equilibrium of the stringer
and can be written as

ZJx N,(%,0")dX+0y(x). A,—P.H(x) = 0. 9)

The constitutive relation for the stringer is taken to be

o5(x) = Eg(x) (10)
which, together with the condition of axial strain continuity between the stringer and shell,
becomes

E

as(x) = ﬁ

(Nxx_VNyy)|y=0' (11)

Upon the introduction of (11) into (9) and the subsequent differentiation with respect to x,
the following expression is obtained :

E.A,

2ny+—Eh

(Nxx.x - VNyy,x)'y=0 =P. (S(X) (12)

The final form for this b.c. is obtained by introduction of the stress potential function as
before. Thus, (12) becomes

EA,
_2¢.xy+"£~—h— (¢,xyy_v¢,xxx)|y=0 =P, 5()6) (13)

The fourth and final b.c. is a statement of the moment equilibrium of the stringer. This
condition becomes

FEJW xxrx+ D2 = V)W 1y + Wy, )ly=0 = 0 (14)
when elementary beam theory is used to describe the stringer. Equation (8) can be used to
simplify (14) to

%Eslsw,xxxx + Dw,yyyly= 0= 0. (1 5)
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The field equations (1) and (2) together with the b.c. as expressed by (7), (8), (13) and
(15) and the requirement of boundedness of unknowns at infinity constitute the boundary
value problem for the semi-infinite domain (- o0 < x < o0, 0 < y < ) to be solved.
Upon introduction of the non-dimensionalized quantities

Eh
“TEA
_ Eh
"=EAY
Eh (16)
¢ = PESAS(I)
__EA,
Y= PR
the field equations (1) and (2) become
V4W+ﬂ4$,§§ = 0 (17)
respectively, where
E.A
- Y s (] —p2)1R 1
p= 11201V s = 21—y (19)

is a parameter providing a measure of the shell curvature. In a similar manner (7), (8), (13)
and (15) become

a,rmn +(2+ V)$,§§n|n= 0=0

Walp=o0 =0

- 2‘5,@1 + (ﬁétm - va.éééln: o = 0(¢)
Bzwyéééé + V-V,mmlﬂ: 0o=0

(20)

respectively, where
I
Ah?

B* = 6(1—v?)

provides a measure of the stringer bending stiffness.
Solution and results

Fourier transforms will be used to effect the solution of the boundary value problem
as stated in the previous section. The notation

J@ = [ s@explivg 4z ey
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is adopted for the Fourier transform f(w) of f(&). The associated inversion formula is
1 o0
1O =5 [ Feexs(-itw) do. 3

Application of the Fourier transform in ¢ to the field equations (17) and (18) yields,
respectively

W,,,,,,,,,—2w2W‘,m+a)4W—ﬁ4u)f¢5 =0 (24)
(5,,,,,,,,,—2602(5,”,,-}-@4('54_602@ =0 (25)
for —o0 < w < o0 and 0 < 5 < oo. Solutions of these equations for ¢ and W are

P(w, ) = A(w) explon)

(26)
Ww, ) = Blw) explan)
where a = a(w) is determined from the characteristic equation
(2? —w?)* + p*ow* = 0. 27
The four values of a? satisfying (27) are
a? = 0? + flw| exp(inn/4), (n=1,3,57). (28)

Due to the requirement of boundedness of solutions as # — oo, only those roots for a(w)
satisfying (28) and having negative real parts will be retained. The four roots satisfying this
condition are

ay(w) = —|w* (o] +p)+ip]

ay(w) = —|w(wl—p)+ip]* 29)
a3(w) = —|ol}[(w]—p)—ip] = a¥(w)

ay(w) = —|ol[(o]+p)—ip]t = a(w)

where p = //2 > 0. The square roots occurring in (29) have the interpretation
2t = +1z1* exp(if/2) (30)

where z = |z] exp(if), |z|* > 0and 0 takes on its principal value,ie. - < 0 < 7.
The complete solutions for ¢ and W with as yet unknown coefficients can be written as

é= Z} A{) expla,)

. &
W= Z B,,((U) exP(“n’?)
n=1
where the A,’s and B,’s are related according to the expression
B, = (—1)if*A,, n=1,2734) (32)

The four independent coefficients appearing in the solutions (31) are determined by en-
forcing the four b.c. given by (20). The appropriate form of these equations is obtained by
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application of the Fourier transform in £ as before. One thus obtains
Gon— R+ VG fly=0 = 0
Walp=0=0
=20 4+ @ gyt V0 Ply—0 = i/
B2w4w+ﬁ)’m,,,l,,=0 =0

for these conditions.
Recalling that

Ny = _d),én

and hence, upon transformation in &,
- N 4
ny|q=0 = l.(Ud)‘,,l,,:o = iw Z A,,((I))a,,((,l))
n=1
we shall focus attention on the quantity
4

S(w) = Z A () (w

(33)

(34)

(3%)

(36)

A straightforward if somewhat tedious application of the b.c. (33) in conjunction with
solutions (31)and the definition for S(w) given by (36) yields, by a process of matrix inversion,
an explicit formula for S(w) in terms of the quantities «,(w). For the general case of arbitrary

bending stiffness of the stringer, i.e. B> > 0,
S(w) = —2C.(F+G—H+J)"!

where
C = Re[(m* —n*)(b—a)]
F = 2.Re[f.m*]. Re[b—d]
G = 2.Re[g.n*].Rela—d]
H = Re[(f.n*+g* . m)(b+a*—2d))
J = Re[(g*.m*— f*.n*)(b—a)]
and

a=0,°
a* = complex conjugate of a
b = ay?

d = 2+ v)w?

f = Qa;—a,;2—vo?)w/a,

g = (203 — 32 —vow/a,
m = (x> + B*w*)/a,

n = (a3 + B*w*)/a;.

37

(38)

(39)



Stress diffusion from axially loaded stiffeners into cylindrical shells 1189

When B? = 0, corresponding to zero bending stiffness of the stringer, (37) assumes the
more simple form

S(w) =i.[w.Re(4)]~! (40)
where
A = {(0y? =20 + @*V) [aF? — 2+ V) Jo¥
— (032 =203 + 0*v) {0 2 = 2+ V), ). (41

{og . af(ed? e} 70

Note that even for B? = 0, S(w)is an extremely complicated algebraic expression containing
many nested irrational functions of .

For purposes of comparison with the solutions for the Melan problem the following
measure of shearing stress will be employed :

() = 2C,N (& Mly-o (42)

Here ¢ = C,{ and C, = $(3—v)(1+v). This measure of shearing stress resulted from the
canonical non-dimensionalization of the Melan problem. An integral representation for
7({) obtained with the aid of inversion formula (23) is

1 [so}
#0) = - fo 2ny(ci,n)|,,=o cos(s{)ds, 0 << oo @3)

where the evenness of N,, in @ has been used and s = C,w.
A similar integral expression can likewise be obtained for the axial stress in the loaded
stringer. Use of the equation for axial equilibrium of the stringer yields the relation

0(@) = = [1=2N (0, ly=o]. (44)

The inversion formula (23) applied to (44) gives

Q) = 1F{ 1[1 —21\7,y(ci, n)l,,=o:|}sin(sC) ds, 0<{<a (45)

TJo | S
where the oddness of &(w) has been used and { was introduced as before. The above solu-
tions, i.e. (43) and (45), can be written succinctly as

o]

T(¢) = lf T(s) cos(s{) ds
T Jo

e (46)
all) = ;f &(s) sin(s{) ds

0

where 0 < { < o0 ;itshould be noted that, fors > 0,

1
&(s) = - [1—%(s)]. (47)

M
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The integrals of (46) were evaluated numerically for small to moderately large values of
{ and by asymptotic techniques for large values of { tending to infinity. It was extremely
helpful to note that both #(s) and 6(s) asymptote rapidly to the function 1/(1 +s) for large,
positive s. This simple function is the transform function, for s > 0, for both the shear stress
and the axial stringer stress encountered in Melan’s problem. For this reason, and also
because both the cosine and sine transforms of 1/(1+ s) are known, attention is directed to
the numerical quadrature of the difference functions

fls) = 1/(1+5)—s)

(48)
&s) = 11 +35)—8(s).
The integrals thus treated by numerical quadrature were
L,
f(s) cos(s{) ds
. (49)

L3
£(s) sin(s¢) ds
0

where the upper limits L, and L, for these integrals are large enough so that integration
above these limits does not make any observable contribution to the integrals as a whole.

The problem of convergence due to the rapid oscillation of the integrand which occurs
for large values of { is greatly reduced by use of a quadrature technique first introduced
by Filon [9]. This technique approximates the enveloping part of the integrand by a quad-
ratic function and then provides for the analytical integration of this quadratic estimate
and the rapidly oscillating function over small intervals. This method is superior to Simp-
son’s quadrature approach, for example, which approximates the entire integrand by a
quadratic function and hence requires much finer increments for comparable accuracy.
As a check on the performance of this technique for large values of {, the asymptotic
behavior for both 7({) and &({) was found from formal asymptotic expansions generated
through the use of Watson’s Lemma.

Two elastic-geometric parameters have been noted to affect the solutions for both
#{) and &({). These parameters are y = E,A,/E(Rh*), a measure of the shell curvature,
and B? = 6(1 —v3)I,/(A,h?), a measure of the stringer bending stiffness. For representative
values of y the dependence of the solutions upon B? was investigated. The limiting extremes
for B? are zero and infinity which correspond, respectively, to zero and infinite resistance
to bending. A paper by Hutchinson and Amazigo [10] was helpful as a guide to realistic
finite values of B%. The following table is given for the purpose of nominal stiffness classifica-
tion:

Stiffness B?
None 0
Light 25
Medium 50

Heavy 250
Infinite e
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For small shell curvature as reflected by small y, say y < 1, the difference between the
limiting solutions for B> = 0 and B> = oo was found to be quite small. This result is
illustrated by Fig. 3* showing 6({) vs. { for the case of y = 1. This result is somewhat to be

T T T
.
e os ()
05— ) g ]
Eh
t e
2 2, Is
=608
oaf- St
, - Ests
£(Rh)2
odf- -
a(f)
o2k ]
8%:0
MELAN ©
ol ]
{ | L
o5 10 05 )
L 29

F1G. 3. 6({) vs. {, shallow shell theory;y = 1.

expected since in the case of zero curvature (y = 0) w = 0 and bending stiffness of the
stringer is completely irrelevant. It is also noticed that the solutions for y = 1 do not differ
substantially from the results of the Melan problem. As the shell curvature is allowed to
increase, however, the enveloping solutions for B> = 0 and B> = oo become farther apart
as well as quite different from the Melan results. The behavior of &(() vs. { for y = 5 and
7 = 10is shown in Figs. 4 and 5 respectively, for B* = 0, 50, 250 and co. These figures give

T T T T T T ﬁ
ey sl . OstEl
05 S g 1 0 T oy .
_(_Eh _{_Eh
4 M(CyEsAs)x § _(CyESAs)XI
2. 6(1-,2) 18 2. 6(1-,2) 18
oal B%=601-7) =% i oale B2= 6(1- o )AShz |
EgAg S EsAs
y: / Y- 3,172
E(RK3)'/2 E(Rn%)
82:0
o3 J 03 50 {
Z:
D g FL)
50
o2 250 i o2 250 i
MELANT MELAN @
ol 4 o1f |
| ! | 1 ] i
) G5 5 05 0 o 05 10 05 0
4 It ¢ y
F1G. 4. 6({) vs. {, shallow shell theory; y = S. F1G. 5. 6({) vs. {, shallow shell theory;y = 10.

* It should be noted that for this figure and for all succeeding figures Poisson’s ratio has been assigned the
value of one-third. Also note that a split scale is used for the abscissas of these figures, thus allowing the results
to be plotted for { between 0 and co.
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support to the usual assumption made for problems of this type, namely that the bending
stiffness of stringers can usually be ignored. Results will henceforth be given for the limiting
cases of B = 0 and B? = w0,

Of primary interest in this analysis is the dependence of the solutions for 7({) and &({)
on the shell curvature. The behavior of 7({) is displayed in Fig. 6 for B> = 0and y = 1, 5
and 10. These results are contrasted with 7({) as found for the Melan problem (y = 0).
Similarly, 3(¢) is displayed in Fig. 7 for the same values of B2 and y.

T T T
o6}~ 1 —— T T
2C,E5A
700 () vy 1,01
_{_Eh =y Is ()
¢ (o8 . e ‘
B%: 60149 15, ¢ ’(c.,ESAS)X
Ash 8- 601-,2) 15,
04 . Eshs - oaf ") i 1
14 3,1/2 EgA
E(Rh7) Yy - 3,172
(L) J E(RN)
03— o3 4
(L) y =10
o2 g o2 5 B
MELAN (y:=0) ]
1 MELAN {y=0)
ol 410 o1
] ] 1 i l 1
) 08 0 05 0 05 10 05 0
¢ 17t 4 ¢
Fi1G. 6. T({) vs. {, shallow shell theory; B? = 0. F1G. 7. 6(0) vs. {, shallow shell theory; B? = 0.
o6 R — T T
2C,E5A
(0= (=520 )y (g, 0m
_(_En . og (L)
05~ [ (C—yEsAs)X K 05 (L) (PrAg -
2_ 2y Is S(=EM_)x
8= 60%) 1 4 (CvEsAs)
. EsAs
04L 77 Etrny)V2 - 04
T(g)
03— . 03
(1)
o2k MELAN (=0 J oz
olf- . o
I
0 05 [55) 05 0 0

r ¢ r - | 1z
FiG. 8. T({) vs. ¢, shallow shell theory; B? = . F1G. 9. &(0) vs. {, shallow shell theory; B2 = w«.
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The behavior of #({) for B = co and y = 1, 5and 101is given in Fig. 8. As in Fig. 6 these
cylinder results are contrasted with the flat sheet Melan results (y = 0). Similarly, &({) is
displayed in Fig. 9 for the same values of B? and y. From a comparison of the results of
Figs. 6 and 8, or 7 and 9 it is obvious that the solutions for B2 = oo differ much less from the
Melan results than do those for B = 0 (for fixed y). This is due to the fact that for B*> = o,
w(x, y)ly=0 = 0, which matches the condition along the stringer for the Melan problem
(w = 0). It should also be noted from either Fig. 7 or 9 that for a given value of { the stringer
stress for the cylinder (y > 0)is greater than that for the flat sheet (y = 0). Due to the expo-
nential decay of stress quantities in the circumferential direction, stress diffusion for the
cylinder is not as efficient in this direction, and this probably accounts for the observed
behavior of the axial stringer stress.

APPROACH BASED ON THE SIMMONDS’ EQUATIONS
FOR CIRCULAR CYLINDRICAL SHELLS

The complete circular cylindrical shell with an arbitrary number of equally spaced
axial stringers will now be treated. The cases of one and two stringers are examined in some
depth as they should offer the best basis on which to judge the performance and limitations
of the shallow shell analysis. In particular one discrepancy already evident is that the shallow
shell analysis predicts zero axial stringer stress at infinity (the ends of the stringers) due to
the infinite parabolic shell cross section, whereas a finite non-zero stringer stress is antici-
pated on the basis of simple statics for the case of the finite circular shell cross section.
Results are also given for the cases of six and ten stringers for the purpose of illustrating
the effect of stringer spacing.

For the specific load system under study, i.e. a single concentrated force applied to and
directed along each stringer, it is possible to reduce the domain of the boundary value
problem to that portion of the shell bounded by a stringer and the generator halfway
to an adjacent stringer. For the case of a single stringer, this domain will be half the shell.

On the basis of the conclusions drawn from the shallow shell analysis concerning the
effects of bending stiffness of the stringer, only the enveloping solutions of zero and infinite
bending stiffness will be sought. The specific boundary value problem illustrated in the
following is that of zero bending stiffness, i.e. B> = 0. A shell theory for circular cylindrical
shells due to Simmonds [7] will be used for this analysis. Starting from the linear theory of
Sanders [11] and specializing to the case of circular cylindrical shells, Simmonds is able to
obtain a particularly simple form for the equilibrium and compatibility equations through
approximations introduced solely in the constitutive equations. These approximations
introduce errors into the theory which have been shown to be negligible by Koiter’s
arguments [12].

Boundary value problem

The field equations for the Simmonds’ theory expressed in terms of a stress potential
function F, and the shell normal displacement component w, are

D(V*w+W" +Aw")+ RF" = 0 (50)
(V4F +F "+ AF")— EhRw" = 0 (51)*

* Additional terms in this equation are present when surface loading exists.
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where
() =R(),
(V) =0)e=R(),

/ = arbitrary, O(1) constant.

(52)

Equilibrium of the shell in the normal direction is expressed by (50) and (51) is the state-
ment of compatibility of strains. For convenience, 4 is equated to zero in what follows.
Auxiliary equations for stress and displacement quantities in terms of F and w have also
been developed and tabulated by Simmonds. Certain of these relations will be introduced
as needed for this analysis. In general, stresses depend upon w as well as F for this theory.

The boundary conditions to be satisfied along the stringer at y = 0 and along the other
bounding generator at y = nR/N,, where N, equals the number of axial stiffeners, will
now be developed as expressions involving only F and w. The four physical conditions
along the stringer (— o0 < x < o0, y = § = 0) are the same as encountered in the shallow
shell analysis. The first of these is

o(x, y)|y=0 = uy(x, D=0 = 0 (53)

which implies that ugls— o = 0. From Simmonds’ auxiliary equations
|
"o NE? . " 54
up (EhR)[(Z—H)F +F "+ F] (54)

and hence b.c. (53) becomes
[(Q4+VF"+F "+ FTlg=0 = 0. (55)

The next condition which also follows from symmetry is that the rotation of a shell element
in the circumferential direction ¢, is zero along this line of stringer attachment. This
condition

1
Polo=0 = —E(W. —Ug)lg=0 = 0 (56)

together with (53) reduces to
Wlg=o = 0. (57)

Axial equilibrium of the stringer is expressed by
2 f Ng(X,07)dX + [04(x)—0(—0)]4,—P. H(x) = 0. (58)

Treating the stringer as a rod and using the condition of axial strain continuity along this
line of stringer attachment, one obtains

E;
0, = Eg, = Eylg-0 = Eu;0=0- (59)

From Simmonds’ auxiliary equations

1
L= (F "+ F—vF"). 60
u, EhR(F +F—VvF") (60)
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Introduction of (60) into (59) yields

E,

EhRZ(F "+ F—vF")g=0. (61)

O-S
The following relation is also due to Simmonds:

N, = Rlz {F” (D) (W +w+(2~v)w"]} . (62)

*

Equation (62) can be simplified by use of (57) to

1 DYy .|
Noso=0 = RZI:F” (R) :Ilozo- (63)

Differentiation of (58) with respect to x and the subsequent introduction of (61) and (63)
into this equation yields

2 D o | EA ")
—(F) I:F”—(—R—)w ] ERR? [F"+F—vF")"4=0 = P[é(x)]". (64)

The last condition concerns the resistance to bending offered by the stringer. For
B? = 0 no transverse shear is exerted by the stringer along this shell edge. The relation for
this transverse shear from Simmonds’ auxiliary equations is

R, = —EDj W +w+Q2—vw"T. (65)

Use of (65) together with (57) yields
Wilp=0=10 (66)
for this boundary condition. Use of (66) in (64) yields

2 E.A
(RZ)F” ERR? 3 [F"+F—vF"Tg=o = Plo(x)]" (67)

The boundary conditions along the other bounding generator (—ow < x < 00,
§ = 0 = n/N,) are similarly obtained from symmetry considerations and can be written as

Wle=a = W'lg=g =F'lo=g =F "lo=5 = 0. (68)

The field equations (50) and (51) subject to the boundary conditions (55), (57) and (66)
through (68), together with the requirement of boundedness as |x| — oo, constitute the
boundary value problem for the infinite strip domain (— o0 < x < 00, 0 < y < 7R/N,)
to be treated. As before these equations will be cast into a more concise non-dimensional
form. Through the use of (16) the field equations (50) and (51) become

V4W+ZZW,""+ﬂAF,§§ = 0 (69)
V4F+22F’""—W,<§ = 0 (70)

respectively. The parameter 4 = 2nE A,(EA,) is essentially the ratio of the stringer
stretching stiffness to that of the circular shell and is completely determined by speciﬁcation
of y and the shell thickness ratio (4/R), i.e. A = (h/R)*y. The four b.c. along the stringer,
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(55), (57), (66) and (67), become
F.mm +(@2+ V)F-één + ‘ZZFy'll'l= 0=0

Wolpeo =0
Mn=0 (71)

W amrln=0 = 0
= 2F g+ F gy — VF e+ APF o = 8(8)
respectively, and the four conditions along the generator at 7 = n/N,A, Equations (68),
become respectively,
Woaln=i = Wamaln=5 = F,'ll'l='7 = F,mmln=r7 = 0. (72)

At this point the two differences arising in the boundary value problem formulation
for B> = oo will be cited :
(1) the third b.c. of (71) becomes

Wly=0=0 (73)
(2) thelast b.c. of (71) becomes

42
- 2F,<§§rl + 6(1— v2)'y4 W o + F,éérm -
—VF geee+ AF gdy—0 = [8(8)] ¢

Note that as 42 — 0, corresponding to (4,/A4,) — 0, the above field equations with associated
boundary conditions along the line of attachment of the stringer reduce to the correspond-
ing relations for shallow sheil theory and that the other boundary goes off to infinity.
Hence, it appears that the shallow shell solution is the asymptotic solution to the complete
shell problem in the limit as 4 — 0, holding y fixed.

Solution and results
Fourier transforms will again be used to effect the solution of the boundary value
problem as stated in the previous section. Upon transformation with respect to £, the field
equations (69) and (70) become
W — 2002W g+ 04 W+ A2W ,, — B’ F = 0 (75)
F oy —20°F p+ 0*F + A2F , + 0™ = 0. (76)

L]

Exponential solutions of the form exp(an) are appropriate and their use in (75) and (76)
yields the characteristic equation for the exponent coeflicients a(w)

(o —w?)?+ A2 + f*0* = 0. (77
The roots of (77) for «> are
a2 = {[H+2z,%]
3[H~z,*]
o3> = J[H+ 2] = af?

1,2 = §[H—214] = a3?

1

oy

(78)
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where
H =2w*— 42 (79)
z, = [A*—44%w?* + idp*w?] (80)

and the square root convention is the same as before. The eight roots of (77) for « may be
written concisely in the notation of (78) as

o = —(“12)% = —Us
ay = —(@) = —a
2 2 6 (81)
A3 = —(“32)4} = —oy = af
ay = — (a2 = —og = of.
The complete solutions with as yet undetermined coefficients are
- 8
Flo,n) = ) Aw)exp(oyn)
n=1 (82)

8
W, = 3, Bife) explan)

where 4, and B, are not independent quantities but are related according to the relation

B, = p,A, (83)
where

PL=Dy= —DP3= —Ps=Ps=Ppg=—p;= —pg = —iff". (84)

As before, attention will be directed to N »= Since knowledge of this function is sufficient
for the determination of both the transmitted shearing stress and the stringer stress. For
the case of B2 = 0,

8
Nyx|n=0 = in,ryIn=0 = l(D Z A,,((U)(X,,(CU) (85)
1

n=

which is analogous to the expression encountered in the shallow shell analysis. For B2 = «
the expression giving N »x is somewhat more complicated due to the additional dependence
upon W. This expression is

—ioNdy=0 = @*F;+ 20W yrly=0

N (86)
= Y [w*4,a,+ AoB,2,"]
1

where 1, = A%/12(1 —v2)y*.

The coefficients 4,(w), and hence B,(w), or more importantly the particular combina-
tions of these quantities as required in (85) and (86) are determined by application of the
b.c. (71) and (72). The appropriate form for these b.c. is obtained by application of the



1198

F. JosepH FISCHER

Fourier transform as before. For n = 0,

Ennrl—(2+ v)wzﬁn-{— Zzﬁ,n =0
w,=0
W gy = 0

—2F,+F,,+vo’F+ A°F = ijo

and for 5 = 7 = n/(N,A),

Wy =W =Fy=Fp,=0

become the appropriate expressions.
When B? = 0, (85)is pertinent and

where,

and

N,, = Re[C]
C=(c=b).[(f.s—1.9c+d)s—q)+m.r—g.t)(b+d)(t—r)]!

b=ua?

c= oy’

d = [A? -2+ v)w?]

e = —(A%+vw?)
f=elag+2—a, = —I+4
g=elty+2—0, = —m+4
il = n/(N,A)

g = expla,ff) = 1/s

r = explas) = 1/t

When B? = o, the pertinent expression is (86) and

where

(wZPz_/{oﬁzpl)
(Py.Py+ P, . P3)

Nyx[r]=0 =
P, = Im{[s(c +d)(1 +¢*)/(1 - ¢?)
—tb+d)(1+r3)/(1 =r?)])/[c—b]}
P, = Re{[t(1+r3)/(1 —r¥) = s(1 + g1 — g*)}/[c—b]}
Py = Re{(c+d)(f —1.¢)/(1—¢%)
—(b+d)(g—m.r)(1-r*)])/[c—b]}
P, = Im{[(g—m. /1~ r?)—(f = 1. g1 - g*)}/[c—b]}

(88)

(89)

(90)

o1

92)

(93)
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and
b=ua?
c = a,’
d = [A? -2+ v)w?]
e = —(A% +vod)w?

f = (e+20%0; — a2 —i240f%0, /0,

g = (e+ 2(1)2&2 —a)2a22 —_ i210ﬂ2a231/a2

(94)
= —(e—20%0; —w?a 2 +i24f%, /0,
m= —(e—2wu, —w?ay® + 2% /2,
q = expla;7)
r = exp(xf)
s = —1/oy
t = —1/a,.

Once again, as in the shallow shell analysis, integral representations can be obtained
for 7({) and &({) which can be evaluated by the process of numerical quadrature discussed
earlier. For the same values of y considered previously, i.e. y = 1, 5, 10, and for various
numbers of stringers the resultant shear stress and stringer normal stress were obtained.
The parameter 4 must also be specified for these calculations. It is helpful to note that

A =7y.(hR) (95)

As has been previously mentioned, the shallow shell analysis is recovered from this analysis
in the limitas A — 0 holding y fixed, i.e. (h/R) — 0. A critical test for the shallow shell results
is obtained by specifying (h/R) to be 0-01 in the present analysis.

The calculated values for 7({) when N; = 1 or 2 were found not to differ appreciably
from those values found from the one-stringer shallow shell analysis for this function.
Hence, Figs. 6 and 8 represent quite adequately the behavior of 7({, y) for B> = 0 and
B? = oo respectively, as found from this *“exact” analysis. The stringer stress is a more
sensitive measure of the stress diffusion for this problem since it reflects the cumulative
effect of the transmitted shear stress. That is, although a significant deviation between
curves for 7({) might not be present, the accumulation of this deviation may become quite
important.

A specific comparison between the shallow shell results and the results of the present
analysis is given by Figs. 10 and 11 for N, = 1 and N, = 2 respectively. For these figures
B*=0and y =1, 5 and 10. The results for B> = oo display a completely analogous
behavior. The better agreement of results for Ny = 2 than for N, = 1 may at first seem
strange due to the relative stringer spacing, but it is completely acceptable on the basis
that a(oco) is greater for Ny = 1 due to the overall moment at infinity which exists for this
case. For N; > 2, no such moment exists and increasing N, brings about increasing dif-
ferences between the results of this analysis and the single-stringer shallow shell results as
illustrated by Figs. 12 and 13 for B> = 0 and B? = oo, respectively. This result was to be
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anticipated since the single-stringer shallow shell analysis included here is based on the
assumption that stringers are spaced sufficiently far apart so that any effects due to the
presence of adjacent stringers can be neglected. Comparison of Figs. 12 and 13 shows that
as the number of stringers is increased for shells of moderately large curvature, thus increas-
ing the stretching stiffness of the composite structure, the effect of stringer bending stiffness
becomes greatly diminished.



Stress diffusion from axially loaded stiffeners into cylindrical shells 1201

CONCLUDING REMARKS

In conclusion it should be noted that significant differences arise with regard to the
transmitted shearing stress and stringer normal stress of Melan’s load diffusion problem
when curvature transverse to the stringer is introduced. The singularity of the shear
function at the point of load application is unaltered, as was to be expected on physical
grounds, but a finite modification there and over the entire stringer length is necessitated.
The membrane shear stress transmitted to the cylinder is less than that for the flat sheet
over nearly the entire length, and the stringer normal stress is consequently greater.

For the situation of complete circular cylindrical shells, the one-stringer shallow shell
approach yields quite good results for the stress quantities of interest provided the stringers
are not too closely spaced and provided these results are not used in the immediate vicinity
of the stringer ends. The assumptions made in developing the shallow shell results also
admit the possibility that these results might pertain to cylindrical shells other than
circular, e.g. elliptical, if some discretion is used in their application.
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AGcrpaky—Pewmaerca 3anava priddby3un Harpy3ku VIS LMAKHAPHYECKUX ynpyrux obonovex. Uccrenyrores
BeCcKOHEHHO ANHHHBIe 0B0MOUKN KPYIIOro NONEPEYHOTO CEYSHHS U TOCTOSHHOM TOMUMHLL. 3T HHIMHADSL
YKpenvieHsl OXHUM WK Gonlee PaBHOMEPHO PACTIONOKEHHBIMH M HENPEPLIBHO NPUKPEIICHHBIMH OCEBBIMH
pebpamu xectkocti. Kaxnoe pebpo *eCTKOCTH 3arpyXeHHOE ONHON KOHLEHTPHYECKOH IPOINONbHOMH
cunoii. BenuuuHa, HanNpaBNeHHE M OCEBOE NOIOKEHHE KAXNKAON CHITbL OAHHAKOBBI. BelIHYHHBI HATIPSOKEHHHE
B MPOUEHTAX ABNSFOTCH MeMODaHHBIMH CABMIAIOWIMMH HANDAKEHUAMM, KOTODHIE NEPEAAIOTCH yYepe3
HarpyxeHHoe pebpo XeCTKOCTH Ha OB0O0NOYKY, W OCEBBIMH HANPMKCHUAMH, BO3HHKAIOUIMMM BHYTDH
pebpa. MnnrocTpHpyeTcsa HOPANOK 3THX BEIMYHH HANMPAXKEHHH NS KAKOOH KPHBH3HBI OBOS0YKH,
paccTosinug pebep xecTKocTH M 3ddexra xecTkocTH npu KH3rube pebep.



